- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Brundan, Jonathan (4)
-
Savage, Alistair (4)
-
Webster, Ben (4)
-
BRUNDAN, Jonathan (1)
-
SAVAGE, Alistair (1)
-
WEBSTER, Ben (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (3)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The degenerate Heisenberg category Heis_k is a strict monoidal category which was originally introduced in the special case k=-1 by Khovanov in 2010. Khovanov conjectured that the Grothendieck ring of the additive Karoubi envelope of his category is isomorphic to a certain \Z-form for the universal enveloping algebra of the infinite-dimensional Heisenberg Lie algebra specialized at central charge -1. We prove this conjecture and extend it to arbitrary central charge k. We also explain how to categorify the comultiplication (generically).more » « less
-
Brundan, Jonathan; Savage, Alistair; Webster, Ben (, Journal of Pure and Applied Algebra)
-
Brundan, Jonathan; Savage, Alistair; Webster, Ben (, Journal of Algebra)null (Ed.)
-
Brundan, Jonathan; Savage, Alistair; Webster, Ben (, Selecta Mathematica)null (Ed.)
-
Brundan, Jonathan; Savage, Alistair; Webster, Ben (, Algebra & Number Theory)null (Ed.)
An official website of the United States government
